
CSCI5550 Advanced File and Storage Systems

Lecture 05:

Distributed File Systems

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 2

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Client-Server Model (1/2)

• Generic Client-Server Model:

– One (or a few) server stores the data on its disks;

– Multiple clients request data through protocol messages.

CSCI5550 Lec05: Distributed File Systems 3

Easy sharing

of data across

multi-clients

Centralized

administration

for data backup

and security

Client Server

Client-Server Model (2/2)

• Client

– Issues system calls to the

client-side file system to

access files on the server.

– Caches retrieved blocks in

memory for future use.

• Server

– Accesses data blocks in

the server-side file

system (i.e., file server).

– Caches and buffers

reads/writes in memory.

CSCI5550 Lec05: Distributed File Systems 4

File accesses

are transparent

to the client!

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 5

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Network File System (NFS)

• Sun Network File System (NFS)

– Developed by Sun Microsystems in 1980’s.

– An open protocol that specifies the exact message

formats for client-server communication.

• Rather than a proprietary and closed system.

– It worked: Many big companies sell NFS servers, including

Oracle/Sun, NetApp, EMC, IBM, etc.

• Current Standard: NFSv4 supports larger-scale protocol.

• We focus on the NFS protocol version 2 (NFSv2):

– Goals of NFSv2: simplicity and fast crash recovery

• Crashes are common in distributed systems, due to power outages,

software bugs, network disconnections, etc.

CSCI5550 Lec05: Distributed File Systems 6

• NFS is stateless: The file server doesn’t keep track

of anything about the actions of clients.

– Each client includes all information in the protocol request;

– The server processes and then “forgets” the request.

• CounterEx: Shared state complicates crash recovery.

– The client-side file system opens the file.

– The file server opens the file and returns the descriptor (fd).

– The client-side file system uses fd for subsequent reads.

CSCI5550 Lec05: Distributed File Systems 7

char buffer[MAX];
int fd = open("foo", O_RDONLY); // get descriptor from server
read(fd, buffer, N); // read N bytes from foo via fd
...
close(fd); // close file

Fast Crash Recovery: Statelessness (1/2)

• Server Crashes

– Imagine the server crashes between two consecutive reads.

– After the server is up again, the client re-issues the read.

– The server has no idea to which file fd is referring.

• fd was keeping in server memory and lost when server crashed.

• Client Crashes

– Imagine a client opens a file and then crashes.

• The open() uses up a file descriptor on the server.

– However, the server never receives a close().

• For above reasons, NFS adopts a stateless design.

– No fancy crash recovery is needed:

• The server just starts running again;

• A client, at worst, might have to retry a request.

CSCI5550 Lec05: Distributed File Systems 8

Fast Crash Recovery: Statelessness (2/2)

NFSv2: A Stateless File Protocol (1/2)

Key to NFSv2 Protocol: The File Handle

• A file handle uniquely identifies a file or a directory

with three components:

 Volume Identifier: specifies a file system;

 Inode Number: specifies a file/directory in a file system;

 Generation Number: is needed when reusing an inode.

• By incrementing it whenever an inode number is reused.

• The server ensures that a client with an old file handle cannot

accidentally access the newly-allocated file.

• A file handle is encoded into some forms of strings.
CSCI5550 Lec05: Distributed File Systems 9

NFSv2: A Stateless File Protocol (2/2)

• NFSPROC_LOOKUP

– Obtain a file handle for a file or directory from the file server.

• NFSPROC_READ

– Pass the file handle, offset, and the number of bytes to read;

– Obtain the retrieved data.

• NFSPROC_WRITE

– Pass the file handle, offset, the number of bytes, along with

the data to write.

• NFSPROC_GETATTR/NFSPROC_SETATTR

– Get/Set metadata (e.g., last modified time) with a file handle.

• Others: NFSPROC_CREATE, NFSPROC_REMOVE,

NFSPROC_MKDIR, NFSPROC_RMDIR, NFSPROC_READDIR

CSCI5550 Lec05: Distributed File Systems 10

Protocol Messages

• The client-side file system tracks open files, and

translates file system calls into protocol messages.

• The server responds to protocol messages, which

contains all information needed to complete a request.

• Example: Reading a File

CSCI5550 Lec05: Distributed File Systems 11

Client Protocol Messages

fd = open(“/foo”, …); NFSPROC_LOOKUP(rootdir FH, “foo”)

read(fd, buffer, N); NFSPROC_READ(FH, offset=0, cnt=N)

read(fd, buffer, N); NFSPROC_READ(FH, offset=N, cnt=N)

read(fd, buffer, N); NFSPROC_READ(FH, offset=2*N, cnt=N)

close(fd); (do nothing)

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 12

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

• Three types of protocol message losses:

CSCI5550 Lec05: Distributed File Systems 13

Handling Server Failures (1/3)

Case 3

Reply Lost

Do It

Again!

Handling Server Failures (2/3)

• In NFSv2, a client detects the response timeout and

simply retries the request.

• Reason: Most NFS requests are idempotent.

– The effect of performing the request multiple times is

equivalent to that of performing the request a single time.

– E.g., LOOKUP, READ, and WRITE requests are idempotent.

CSCI5550 Lec05: Distributed File Systems 14

Case 1

Request Lost
Retry!

Case 2

Server Down
Retry!

Handling Server Failures (3/3)

• Some requests are hard to make idempotent.

– For example, if the file server receives a MKDIR protocol

message and executes it successfully;

– But the reply is lost and the client may retry it (as Case 3).

– The server must fail the retry (rather than re-do it).

• Why? The effect of creating a directory twice is not equivalent to the

effect of creating a directory once (i.e., not idempotent).

CSCI5550 Lec05: Distributed File Systems 15

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 16

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Client-side Caching / Buffering

• Sending all read and write requests across the

network can lead to a big performance problem.

• Intuitive Solution: Client-side Caching / Buffering

• The NFS client caches file data and metadata read

from server in its local memory.

– The first access is still expensive (via network

communication);

– Subsequent accesses are serviced quite quickly in memory.

• The NFS client buffers data in its local memory

before writing them out to server.

– The write() system call succeeds immediately.

CSCI5550 Lec05: Distributed File Systems 17

Cache Consistency Problem (1/2)

• Consider a NFS with three clients and one server:

– Client C1 reads a file F[v1], and keeps a copy in its cache.

– Client C2 overwrites file F, but buffers F[v2] in its cache.

– Client C3 has not yet accessed the file F.

• Cache Consistency/Coherence Problems:

 Stale Cache (from read perspective)

• The cache still holds not-yet-updated data.

 Update Visibility (from write perspective)

• Updates are buffered in memory and not seen by others.

CSCI5550 Lec05: Distributed File Systems 18

Cache Consistency Problem (2/2)

 Stale Cache: C1 has the stale F[v1] in its cache.

– Solution: NFS clients first check whether a file has

changed before using its cached contents.

– How? Issuing a GETATTR request to server to know when

the file was last modified (but raise flooding of GETATTR).

 Update Visibility: The update from C2 is not visible

to C3: C3 only gets old copy F[v1] from the server.

– Solution: NFS clients (C2) implement flush-on-close to

ensure that a subsequent open will get the latest version.

CSCI5550 Lec05: Distributed File Systems 19

Stale

Cache

Update

Visibility

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 20

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Server-side Caching / Buffering

• The file server can also cache read/write requests.

• Write buffering needs to be carefully implemented:

– The server must commit each write before informing the

client of success.

• To avoid write becoming the performance bottleneck:

– The server may use battery-backed memory or the log-

structured approach to improve write performance.

CSCI5550 Lec05: Distributed File Systems 21

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 22

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Google File System (GFS)

• GFS is a scalable distributed file system for large

distributed data-intensive applications.

• GFS is driven by Google’s specific application

workloads and technological environment.

• As of 2003, multiple GFS clusters are deployed:

– Over 1000 storage nodes;

– Over 300TB disk storage;

– Heavily accessed by hundreds of clients.

CSCI5550 Lec05: Distributed File Systems 23

Considerations and Assumptions

 Component failures are the norm, not the exception.

– The system is of inexpensive components that often fail.

 Files are huge: Multi-GB files are common.

 Appending new data is much more common than

overwriting existing data.

– Random writes are uncommon; instead, clients may

concurrently append large, sequential writes to files.

– GFS fulfils record append and snapshot operations.

 The read workloads consist of large streaming reads

and small random reads.

 It is more critical to sustain high bandwidth rather

than low latency.

CSCI5550 Lec05: Distributed File Systems 24

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 25

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Overview: GFS Architecture

• A GFS cluster consists a single master, multiple

chunkservers, and is accessed by multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 26

Single Master (1/2)

• A GFS cluster consists a single master, multiple

chunkservers, and is accessed by multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 27

heart

beats

Single Master (2/2)

• Maintain all file system metadata:

– Including namespace, access control information, the

mapping from files to chunks, and the locations of chunks.

• Control system-wide activities:

– Chunk replica placement

– Chunk release management

– Chunk migration between chunkservers (i.e., rebalancing)

– Garbage collection of orphaned chunks

• Communicate periodically with each chunkserver in

heartbeats to give it instructions and collect its state.

CSCI5550 Lec05: Distributed File Systems 28

Multiple Chunkservers (1/2)

• A GFS cluster consists a single master, multiple

chunkservers, and is accessed by multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 29

heart

beats

Multiple Chunkservers (2/2)

• Files are divided into fixed-size chunks, which can be

identified by a unique chunk handle (like FH in NFS).

– Chunks are stored on local disks of chunkservers as files.

– Chunks are accessed by the chunk handle and byte range.

– The chunk size (chosen 64 MB) is much larger than typical

file system block sizes (e.g., 4 KB).

• Reduce clients’ need to interact with the master;

• Reduce the size of metadata stored on the master;

• Reduce the network overhead for consecutive workloads (e.g.,

search) by keeping a stable TCP connection.

– Chunks are replicated across chunkservers (by default,

three copies) for reliability concerns.

• Chunkservers need not cache file data.

– Linux’s buffer cache keeps frequently-accessed data.
CSCI5550 Lec05: Distributed File Systems 30

Multiple Clients (1/2)

• A GFS cluster consists a single master, multiple

chunkservers, and is accessed by multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 31

heart

beats

Multiple Clients (2/2)

• GFS client code, linked into the upper application,

offers the file system API to communicate with master

and chunkservers.

• Interact with the master for metadata operations

– Clients can cache metadata to reduce the need to interact

with the master.

• Interact with chunkservers for direct data-bearing

communications

– Clients cache no file data in its local memory.

• Avoidance of cache coherence/consistency issues (existed in NFS!)

• Limited benefits with streaming of large files and large working sets

CSCI5550 Lec05: Distributed File Systems 32

File System Metadata

• The master maintains three types of FS metadata:

 The file and chunk namespaces (i.e., directory hierarchy) ;

 The mapping from files to chunks,

 The locations of each chunk’s replicas.

• The master keeps all three types of metadata in its

memory for fast access.

– Less than 64 bytes of metadata for each 64 MB chunk.

– Less than 64 bytes per file if prefix compression is used.

• The master persists namespaces and file-to-

chunk mapping in its local disks as an operation log.

– But the master does not persist the chunk locations.

• It can be pulled from chunkservers at startup via heartbeats.

CSCI5550 Lec05: Distributed File Systems 33

Working Example: Client Reads

 C translates (file name and offset) into a chunk
index, and sends a request to M

 M replies C the chunk handle and chunk locations

 C requests for chunk directly from the “closest” CS

CSCI5550 Lec05: Distributed File Systems 34

The “closest” CS

can be determined

by IP address heart

beats

Working Example: Client Writes (1/2)

• A write must perform at all the chunk’s replicas.

• A mutation is an operation that changes the contents

or metadata of a single chunk over all replicas.

– If a write exceeds the chunk boundary, the client must

break it down into multiple mutation operations.

• The master uses leases to maintain a consistent

mutation order across replicas.

– The master grants a lease to one of replicas called primary.

• The lease is designed to minimize management overhead at master.

• A lease has an initial timeout of 60 seconds.

• A lease can be renewed through heartbeats; the master can also

revoke a lease before it expires.

– The primary picks a serial order for all mutations on other

replicas called secondary.
CSCI5550 Lec05: Distributed File Systems 35

Working Example: Client Writes (2/2)

 C asks master for the CSs

holding the primary and

secondary replicas.

 M replies C.

 C pushes the data to all the

replicas in any order.

 Once all acknowledged, C

sends a write to the primary.

 The primary forwards the

write to all secondary(s).

 The secondary(s) all reply

to primary upon completed.

 The primary replies to C.

• If some fail, retry ~ or all.

CSCI5550 Lec05: Distributed File Systems 36

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 37

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Record Appends

• Workload Observation: Clients may concurrently

append large, sequential writes to files.

– Concurrent writes to the same region are not serializable.

• GFS offers an atomic operation called record append.

 C pushes data to all replicas of the last chunk of the file.

 C sends the record append request to the primary.

 If record fits within a chunk, the primary appends data to its

replica and asks secondary(s) to write at the exact offset;

otherwise, the primary pads the chunk to the maximum

size, and asks C to retry the operation on the “next” chunk.

 If a record append fails at any replica, C must retry but may

result in inconsistency: The GFS application must cope with it.

Note: The record append is restricted to be at most one-fourth (i.e.,

16 MB) of the maximum chunk size (64 MB).
CSCI5550 Lec05: Distributed File Systems 38

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 39

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Relaxed Consistency (1/4)

• GFS guarantees a “relaxed consistency” model.

– File namespace operations are atomic: They are handled

by the master exclusively.

– The states of a file region depend on the operation type

(i.e., write or record append), whether the operation

succeeds or fails, and whether there’re concurrent ones.

• “Relaxed” Consistent: all clients see the same data in all replicas

• Defined: a region is consistent after an operation, and clients

see what the mutation has written in entirety

CSCI5550 Lec05: Distributed File Systems 40

Write Record Append

Serial Success defined defined interspersed

with

inconsistentConcurrent Successes consistent but undefined

Failure inconsistent

Relaxed Consistency (2/4)

• Consistent: all clients see the same data in all replicas

• Defined: a region is consistent after an operation, and

 clients see what the mutation has written in entirety

CSCI5550 Lec05: Distributed File Systems 41

Chunk 1

9: Hello

10: World

Chunk 1’

9: Hello

10: World

write(“Hello”, 9)

write(“World”, 10)

Case: Write – Serial Success

defined

Write Record Append

Serial Success defined defined interspersed

with

inconsistentConcurrent Successes consistent but undefined

Failure inconsistent

Chunk 1

9: Hello

10: World

Chunk 1’

9: Hello

write(“Hello”, 9)

write(“World”, 10)

Case: Write – Failure

inconsistent

Relaxed Consistency (3/4)

• Consistent: all clients see the same data in all replicas

• Defined: a region is consistent after an operation, and

 clients see what the mutation has written in entirety

CSCI5550 Lec05: Distributed File Systems 42

Write Record Append

Serial Success defined defined interspersed

with

inconsistentConcurrent Successes consistent but undefined

Failure inconsistent

Chunk 1

9: Hello

10: Wor5550

Chunk 1’

9: Hello

10: Wor5550

write(“World”, 10:0)

Case: Write – Concurrent Successes

consistent but undefined

write(“5550”, 10:3)

Chunk 1

9: Hello

10: World

11: World

Chunk 1’

9: Hello

11: World

Case: Record Append

defined but inconsistent

write(“World”, 10:0)

retry

Relaxed Consistency (4/4)

• Concurrent writes may result in consistent but

undefined:

– All clients see the same data, but it may not reflect what any

mutation has written.

– The order is not guaranteed; a region may contain

fragments from multiple clients.

• Record append ensures a record is appended

atomically at least once, but at an offset chosen by

the primary.

– Applications need to deal with possible duplicates.

CSCI5550 Lec05: Distributed File Systems 43

GFS Limitations

 Single master simplifies the coordination, but it may

become the single point of failure.

– Ceph: A Scalable, High-Performance Distributed File

System (OSDI’06)

 Relaxed consistency burdens the GFS applications.
CSCI5550 Lec05: Distributed File Systems 44

Other Distributed File Systems

• Ceph: A Scalable, High-Performance Distributed File

System (OSDI’06)

• Hadoop Distributed File System (by Yahoo!)

• GlusterFS

CSCI5550 Lec05: Distributed File Systems 45

https://en.wikipedia.org/wiki/List_of_file_systems#Distrib
https://en.wikipedia.org/wiki/List_of_file_systems#Distrib

Summary

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 46

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

